close
  1. if __name__ == '__main__':
  2.     for epoch in range(EPOCH):
複製代碼

在測試 mnist 數字辨識時

代碼來源
https://hackmd.io/@Maxlight/SkuYB0w6_#3-hyperparameter
 

  1. import torch
  2. from torch.utils import data as data_
  3. import torch.nn as nn
  4. from torch.autograd import Variable
  5. import matplotlib.pyplot as plt
  6. import torchvision
  7. import os
  8.  
  9. EPOCH = 1
  10. BATCH_SIZE = 50
  11. LR = 0.001
  12. DOWNLOAD_MNIST = False
  13.  
  14. train_data = torchvision.datasets.MNIST(root = './mnist',train = True,transform = torchvision.transforms.ToTensor(),download = DOWNLOAD_MNIST)
  15.  
  16. print(train_data.train_data.size())
  17. print(train_data.train_labels.size())
  18. plt.ion()
  19. for i in range(11):
  20.   plt.imshow(train_data.train_data[i].numpy(), cmap = 'gray')
  21.   plt.title('%i' % train_data.train_labels[i])
  22.   plt.pause(0.5)
  23. plt.show()
  24.  
  25. train_loader = data_.DataLoader(dataset = train_data, batch_size = BATCH_SIZE, shuffle = True,num_workers = 2)
  26.  
  27. test_data = torchvision.datasets.MNIST(root = './mnist/', train = False)
  28. test_x = torch.unsqueeze(test_data.test_data, dim = 1).type(torch.FloatTensor)[:2000]/255.
  29. test_y = test_data.test_labels[:2000]
  30.  
  31. class CNN(nn.Module):
  32.   def __init__(self):
  33.     super(CNN, self).__init__()
  34.     self.conv1 = nn.Sequential(
  35.         nn.Conv2d(in_channels = 1, out_channels = 16, kernel_size = 5, stride = 1, padding = 2,),# stride = 1, padding = (kernel_size-1)/2 = (5-1)/2
  36.         nn.ReLU(),
  37.         nn.MaxPool2d(kernel_size = 2),
  38.     )
  39.     self.conv2 = nn.Sequential(
  40.         nn.Conv2d(16, 32, 5, 1, 2),
  41.         nn.ReLU(),
  42.         nn.MaxPool2d(2)
  43.     )
  44.     self.out = nn.Linear(32*7*7, 10)
  45.  
  46.   def forward(self, x):
  47.     x = self.conv1(x)
  48.     x = self.conv2(x)
  49.     x = x.view(x.size(0), -1)
  50.     output = self.out(x)
  51.     return output, x
  52.  
  53. cnn = CNN()
  54. print(cnn)
  55.  
  56. optimization = torch.optim.Adam(cnn.parameters(), lr = LR)
  57. loss_func = nn.CrossEntropyLoss()
  58.  
  59. for epoch in range(EPOCH):
  60.   for step, (batch_x, batch_y) in enumerate(train_loader):
  61.     bx = Variable(batch_x)
  62.     by = Variable(batch_y)
  63.     output = cnn(bx)[0]
  64.     loss = loss_func(output, by)
  65.     optimization.zero_grad()
  66.     loss.backward()
  67.     optimization.step()
  68.  
  69.     if step % 50 == 0:
  70.         test_output, last_layer = cnn(test_x)
  71.         pred_y = torch.max(test_output, 1)[1].data.numpy()
  72.         accuracy = float((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))
  73.         print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
  74.  
  75. test_output, _ = cnn(test_x[:10])
  76. pred_y = torch.max(test_output, 1)[1].data.numpy()
  77. print(pred_y, 'prediction number')
  78. print(test_y[:10].numpy(), 'real number')
複製代碼


python在win pytorch情況多曆程報錯 fre
跑一跑泛起

python在win pytorch情況多進程報錯 fre

在這行上面增添

  1. for epoch in range(EPOCH):
複製代碼
網站架設

如許就正常了

文章出處: NetYea 網頁設計

  1. "freeze_support()"
複製代碼

釀成

arrow
arrow
    文章標籤
    網站架設
    全站熱搜
    創作者介紹
    創作者 ramonj147nw 的頭像
    ramonj147nw

    新竹網站架設

    ramonj147nw 發表在 痞客邦 留言(0) 人氣()